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Abstract—An approach to prediction of free convection in non-linear-viscous and Newtonian fluids at

high Prandtl and Schmidt numbers is presented in the form of coupled external and internal asymptotic

expansions. The method is shown to simplify essentially the solution of the initial problem allowing
similarity solutions in particular. The solutions for steady and unsteady free convection are found.
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similarity variables.

RECENTLY the interest in the problems of free con-
vection liquids has grown considerably because of wide
use of fluids (both Newtonian and non-Newtonian) in
chemical, food and construction engineering, in
petroleum production and power engineering. In the
present work a method of solution is proposed for
free convection near bodies submerged into fluid. New
solutions for power-law non-Newtonian fluids illus-
trate its efficiency and operation possibilities. Dimen-
sionless equations of unsteady-state thermal-concen-
trational free convection in the boundary-layer
approach with regard for the temperature-dependent
consistency coefficient are of the form
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The boundary conditions
u=0, ©r=0, ©,=0 at 1=0(>0);
u=0, v=0 6Or=1 O,=1 at y=0, (2)
u—0, Or-0, ©,-0 at y—-oo(t>0).
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Here
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A =sign(Co—C,)| ——
Grr

and geometrical parameters are: M =1, y=0 for a
vertical plate, M = cosg, y =0 for a wedge; M = 1,
y = 1 for a plane critical point.

Solution of the set of equations (1) with boundary
conditions (2) is a matter of great mathematical diffi-
culty. In particular, formulation of (1)—(2) permits no
similarity solutions. The solution of the problem is con-
siderably simplified at high Prandtl (Prr) and Schmidt
(Pr.) numbers because thermal and diffusional bound-
ary layers are much thinner than dynamic one. This
exactly favours the application of the method of
coupled asymptotic expansions. It means that the prob-
lem is presented in the form of two asymptotic (internal
and external) expansions describing the process in one
and the same range of independent variables, but con-
verging to the exact solution in different parts of this
range (internal expansions converge near the wall,
external, far from it). The principle of coupling should
be used to close the system of equations necessary for
determining these expansions.

The set of equations (1) for the internal asymptotic
expansion is written as
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where

Pr; = min{Prr, Pr.}.

The condition u = O at y — co for the internal asymp-
totic expansion should be substituted by the restriction
of u;, which, from physical considerations, results in
the requirement that du,/¢y,; — 0. Thus, the boundary
conditions for system (3) is

®T=®c=0 at FO=O(y1 >0),
N uy=0v;=0, @r=0,=1 at y; =0 @)
a—iﬂo, Or—0, ® -0 at y;—wo(Fo>0)
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The requirement for @y = ®, = 0 in the external
asymptotic expansion results in a set of equations
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The condition of adhesion on a surface cannot be
now realized. A new condition on a surface is deter-
mined from “the principle of limiting coupling” [1].
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Hence the boundary conditions for the system are:
t =0(y; > 0);

v =0

y2 = o0(t > 0)

u, =0 at
u=U, v2=0 at
u, -0 at
where
U= lim ui(Fo,x,yy). (6)

¥y

The statement of the problem (1), (2) in the form of
internal (3), (4) and external (5), (6) asymptotic expan-
sions simplifies considerably its solution without
deleterious effect on quantitative and qualitative esti-
mates of the investigation process.

In contrast to the initial system, equations (3), (4) in
case of steady-state convection, in particular, allows
similarity solutions described by ordinary differential
equations
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with the boundary conditions

f1=05f1,=09 ®T=15 ®c=1 at tho, (8)
-0, ©r-0, ©.—0 at n, —oc.
Local surface heat- and mass-transfer coefficients are
of the form
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The numerical solution is obtained in [2]. The
internal asymptotic expansion allows characteristics of
surface heat and mass transfer and friction as well as
temperature and concentration profiles to be deter-
mined.

To obtain complete velocity profiles over the whole
test region, the solution should be found for the external
asymptotic expansion of the problem.

From the limiting coupling principle and the solution
obtained for the internal asymptotic expansion it
follows
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The transition in (5), (6) to stream function and the
requirement of constant conformal invariance of the
set of equations obtained relative to linear one-
parametric transformation group [3] yield with regard
for (9) similarity variables
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Here
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Variables (10) reduce (5), (6} to the nonlinear differ-
ential equation

1 oot n+1+2y
L e 1%
2[n(n+2)+y2n—1)] .
) = 11
Grrmey =0 )
with the boundary conditions
£0)=0, fi0)=1, fi(w0)-0. (12)

Some results of numerical solution of (11) and (12)
are shown in Fig. 1. Inecrease in pseudoplasticity
{decrease of the non-Newtonian flow behaviour index n)
increases the velocity boundary-layer thickness (in
similarity variables) (Fig. 1a). The geometrical par-
ameter 7 influences slightly velocity profiles, Fig. 1(b).

F1G. 1. Velocity profiles for external asymptotic expansion.

Temperature {concentration) and velocity profiles
found by the method suggested and determined from
the solution of complete problem (1), (2) with n =1,
Prr=Pre=100,A=0,M =1,y =0 (for n =1 prob-
lem (1)-(2) allows the similarity solutions) are presented
in Fig. 2. The plots show fine agreement between the
results. For example, the difference between exact and
approximate heat- and mass-transfer and friction char-
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F16. 2. Temperature and velocity profiles obtained from
exact solution and by coupled asymptotic expansions.
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acteristics does not exceed 3.5%. The composite vel-
ocity profile includes the segments of the profiles for
internal and external asymptotic expansions up to their
intersection. With increasing Prandtl number, Pry,
Schmidt number Pr., the accuracy of determining
both the surfacial characteristics and temperatures,
concentrations and velocity profiles increases.

It should be noted that the solution of (11)~(12} is
universal relative to the Prandt! and Schmidt numbers,
Grashof numbers (Grr, Gr.) and function (@)

Now consider the advantages of the method pro-
posed. Firstly, it results in the problem allowing
similarity solutions; secondly, only the ratio Pry/Pr,
remains in the equations instead of two independent
parameters Prr, Pr.. Also using the similarity variables,
the problem for external asymptotic expansion is solved
independently of that for internal expansion which con-
siderably simplifies integration.

Consider the solution of unsteady-state problem
(3)-(4) for thermal free convection near a vertical plate.
The temperature-dependent consistency coefficient is
neglected. The problem will be solved by a semi-integral
finite-thickness boundary-layer approach [4].

Boundary conditions (4) are extended to y, = §(Fo, x)
and supplemented with the physical requirement

e
=0 at y;=§Fo,x). (13)
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and
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inside the boundary layer, that
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Integrating the energy equation from y; =0 to y; = §

and allowing for the continuity equation and conditions
(14), (4), we obtain the integral relationship
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Approximating the temperature profile by the third-
power polynomial and satisfying (4), (13}, (16), we arrive
3 Y1

at
1( >

Substitution of (17) into the integral relationship
yields upon transformations
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where
1 n+ ,l

Cn) = J (3—8n+6r2—n*) " dn.

o

To close the problem, conditions with Fo = 0 and
x = 0 are needed. They are

8(0,x) =0, &(Fo,0)=0. (19

The system of characteristics for (18) is written in
the form

dF d
aro _ _—“iC’“TH = ds. ©0)
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4 n+1 5
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This set of equations breaks down into the following
equations

5
dFo =2ds,
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Integration of the first equation in (12) with regard
for (19) yields

§=2/2F0)  (Fo< Foy). (22

After integration of the second equation of system

(21) with regard for (19) we obtain
n+1 n

5= [3(3n+ 1)8 7 jl3"+1x§£'_“l
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Relation {22) is valid for unsteady-state free convec-
tion regime, and equation (23) gives the relation for
a steady-state free convection regime. The relation for
limiting characteristics which determines time Fo;
necessary that a steady state be achieved at any x, is
found from the third equation of system (21) allowing
for equations (22} and (23)

(Fo > Foy). (23)
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The velocity of steady-state front propagation is
n—1

U=8"

nt+1

24 CyFo .
3n

The time of development of a steady state vs n and
x (limiting characteristics) is plotted in Fig. 3. Increase
in pseudoplasticity decreases sharply the time of
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FiG. 3. Limiting and heat- and mass-transfer characteristics
for unsteady free convection.

development of a steady state at free convection, thus
increasing heat fluxes on the surface.

The local Nusselt number is

3 L
_ 2n+ 1} inti
Nu= % Gr Pr .

It should be concluded that the method of coupled
asymptotic expansions may be applied not only when
the wall temperature but also a heat flux are prescribed
[5] Besides, this statement allows the characteristics
of heat and mass transfer and friction at a wall for thin
bodies of revolution [6, 7] to be found.
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LA PREVISION DE LA CONVECTION NATURELLE
DANS LES FLUIDES NON-NEWTONIENS

Reésume—On présente une méthode de prévision de la convection libre dans les fluides newtoniens et
visqueux a comportement non-linéaire, aux nombres de Prandtl et de Schmidt élevés, sous forme de
développements asymptotiques externes et internes couplés. On montre que la méthode permet essen-
tiellement de simplifier la résolution du probléme initial en fournissant en particulier des solutions de
similitude. Des solutions sont présentées pour la convection naturelle stationnaire et non-stationnaire.
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EIN VERFAHREN ZUR BERECHNUNG DER FREIEN KONVEKTION
IN NICHT-NEWTONSCHEN FLUIDEN

Zusammenfassung —Es wird der Versuch unternommen, die freie Konvektion in nicht-Newtonschen und

Newtonschen Fluiden bei hohen Prandtl- und Schmidt-Zahlen mit Hilfe gekoppelter, externer und

interner asymptotischer Entwicklungen darzustellen. Es wird gezeigt, daB diese Methode die Losung des

urspriinglichen Problems wesentlich vereinfacht und speziell Ahnlichkeitslésungen erlaubt. Fiir stationére
und instationére freie K onvektion werden LGsungen angegeben.

METO/, PEIUEHUS 3AJAY CBOBOJHOM KOHBEKIIMA B HEHbIOTOHOBCKHX
WKUAOKOCTAX

Amnorammn — Ipencrasied MeTOH MONYyYeHUS pelleHWs 3aJa4 CBOOOOHON KOHBEKLHMH HeJHHeH-

HOBA3KHX H HBIOTOHOBCKHMX XHOKOCTel, uMetolnx Gosbinne yucna [panarna 1 lImunTa, a BHOE

CpalMBacMbIX BHELUHHX H BHYTDCHHHX acHMNTOTHYECKHX pa3noxeHHH. IloxazaHo, 4TO0 NMaHHBIA

METO/ CYLIECTBEHHO YMPOLIAET PELICHHEe HCXOOHOH 3aliayH, MO3BOJNASA, B YaCTHOCTH, NIEPEXOOUTH K

ABTOMOJE/BLHEIM peliieHHAM. HalieHs! pellieHns 3a1a4¥ KaK CTAUMOHAPHOM, TaK H HeCTALUHOHApHOHK
CBOOOIHON KOHBEKIIHH.
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