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Abstract-An approach to prediction of free convection in non-linear-viscous and Newtonian fluids at 
high Prandtl and Schmidt numbers is presented in the form of coupled external and internal asymptotic 
expansions. The method is shown 10 simplify essentially the solution of the initial problem allowing 

similarity solutions in’particular. The solutions for steady and unsteady free convection are found. 
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RECENTLY the interest in the problems of free con- 

vection liquids has grown considerably because of wide 
use of fluids (both Newtonian and non-Newtonian) in 
chemical, food and construction engineering, in 

petroleum production and power engineering. In the 
present work a method of solution is proposed for 
free convection near bodies submerged into fluid. New 
solutions for power-law non-Newtonian fluids illus- 
trate its efficiency and operation possibilities. Dimen- 

sionless equations of unsteady-state thermal-concen- 
trational free convection in the boundary-layer 
approach with regard for the temperature-dependent 
consistency coefficient are of the form 

au I% su 
z+u ,+cy 

LX C‘L’ 

The boundary conditions 

u=O, &=O, O,=O at r=O(y>O); 

u=O, c=O, &-=I, @,=I at y=O, (2) 

u-0, Or-O, O,+O at y + KJ(t > 0). 
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Here 

and geometrical parameters are: M = 1, y = 0 for a 
vertical plate, M = cosq, y = 0 for a wedge; M = 1, 
y = 1 for a plane critical point. 

Solution of the set of equations (1) with boundary 
conditions (2) is a matter of great mathematical diffi- 
culty. In particular, formulation of (l)-(2) permits no 
similarity solutions. The solution of the problem is con- 
siderably simplified at high Prandtl (P+) and Schmidt 
(PrJ numbers because thermal and diffusional bound- 
ary layers are much thinner than dynamic one. This 
exactly favours the application of the method of 
coupled asymptoticexpansions. It means that the prob- 
lem is presented in the form of two asymptotic (internal 
and external) expansions describing the process in one 
and the same range of independent variables, but con- 
verging to the exact solution in different parts of this 
range (internal expansions converge near the wall, 
external, far from it). The principle of coupling should 
be used to close the system of equations necessary for 
determining these expansions. 

The set of equations (1) for the internal asymptotic 
expansion is written as 

all1 au, 
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aoT aoT aoT Pri aZOT 
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&+u’dx+tu’~=-~ 
ayl PrT i?yf ' 

ao, 80, ao, Pri a20, 
~f”‘~+yyy=jgjy 

where 

Pri = min {PrT, Pr,}. 

The condition u = 0 at y --) cc for the internal asymp- 
totic expansion should be substituted by the restriction 
of ul, which, from physical considerations, results in 
the requirement that au,/Sy, --) 0. Thus, the boundary 
conditions for system (3) is 

OT = 0, = 0 at Fo = O(y, > 0), 

ur =ul =O, &=OC=l at y, =0 

au1 
(4) 

---to, OT -0, O,+ 0 at y1 --) cc(F0 > 0). 
ay1 

The requirement for OT = 0, = 0 in the external 
asymptotic expansion results in a set of equations 
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at+"2ax+"2ay,=dYz 
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2~ aY2 
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The condition of adhesion on a surface cannot be 
now realized. A new condition on a surface is deter- 
mined from “the principle of limiting coupling” [l]. 

Hence the boundary conditions for the system are : 

u2 = 0 at t = 0(y2 > 0): 

u2 = U, 11~ = 0 at J’~ = 0 

u2-,0 at y2-‘~(t>0) 

where 

(6) 

The statement of the problem (1) (2) in the form 01 
internal (3), (4) and external (5), (6) asymptotic expan- 
sions simplifies considerably its solution without 
deleterious effect on quantitative and qualitative esti- 
mates of the investigation process. 

In contrast to the initial system, equations (3), (4) in 
case of steady-state convection, in particular, allows 
similarity solutions described by ordinary differential 
equations 

PrT 
0; + - (sgtlj-i)fi 0; = 0, 

Pri 
(7) 

0: + 2 (singf[)fi 0: = 0 
I 

with the boundary conditions 

fr = 0, f; = 0, Or = 1, 0, = 1 at q1 = 0; 

f;‘-0, @j--O, O,*O at r7-t~~. 
(8) 

Local surface heat- and mass-transfer coefficients are 
of the form 

Nuk = -O;(O) 

I I ,I :-,I 

x M3”+lGr~~“+llprZ”+IX3nt~, 

The numerical solution is obtained in [2]. The 
internal asymptotic expansion allows characteristics of 
surface heat and mass transfer and friction as well as 
temperature and concentration profiles to be deter- 
mined. 

To obtain complete velocity profiles over the whole 
test region, the solution should be found for the external 
asymptotic expansion of the problem. 

From the limiting coupling principle and the solution 
obtained for the internal asymptotic expansion it 
follows 

t/ + 1 
n+l n+l+2y 2 __~ _.__ ~. _ 3n+l 

c > 

3ntl 
u = f;(co)pr.l-3”+1X 3ntl M3n+I 

1 
2n+l+y 

.(9) 

The transition in (.5), (6) to stream function and the 
requirement of constant conformal invariance of the 
set of equations obtained relative to linear one- 
parametric transformation group [3] yield with regard 
for (9) similarity variables 

n~+2n-1-2)(2-ll) 

112 = ClY2X 
(3n+l)(n+I) 

2[n(n+2)+y(2n-l)] 

f2(v2) = CZYX (3n+l)(n+l) 
(10) 
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acteristics &es not exceed 3.5%. The composite vel- 
ocity profile includes the segments of the profiles for 
internal and external asymptotic expansions up to their 

n+l ??+I intersection. With increasing Prandtl number, PrT, 
-_- 

-3n+l 3nt1 Schmidt number Pr,, the accuracy of determining 
9 = jy(rn)I+j 

A-. 3n+l 
M3n+l 

i > 

-. 
2n+l+y 

both the surfacial characteristics and temperatures, 
concentrations and velocity profiles increases. 

It should be noted that the solution of (1 l)-(12) is 
universal relative to the Prandtl and Schmidt numbers, 
Grashof numbers (Grr, Gr,) and function o(&). 

Now consider the advantages of the method pro- 

Variables (10) reduce (5), (6) to the nonlinear differ- 
ential equation 

with the boundary conditions 

f2U = 0, .MO) = 1, f;(cob+ 0. w.) 

Some results of numerical solution of (11) and (12) 
are shown in Fig. 1. Increase in pseudoplasti~ty 
(decrease of the non-Newtoni~ flow behaviour index n) 
increases the velocity boundary-layer thickness (in 
similarity variables) (Fig. la). The geometrical par- 
ameter y influences slightly velocity profiles, Fig. l(b). 

+W~+2)+~(2n-Ulf f” =.) (IIf 
posed. Firstly, it results in the problem allowing 
similarity solutions; secondly, only the ratio PrTjPr, 

(3~+1)(?1+1) 
2 2 

remains in the equations instead of two independent 
parameters Pry, Pr,. Also using the similarity variables, 
the problem for external asymptoticexpansion is solved 
independently of that for internal expansion which con- 
siderably simplifies integration. 

Consider the solution of unsteady-state problem 
(3)-(4) for thermal free convection near a vertical plate. 
The temperature-dependent consistency coefficient is 
neglected. The problem will be solved by a semi-integral 
finite-thickness boundary-layer approach [4]. 

Boundary conditions (4) are extended to yi = S(Fo, x) 
and supplemented with the physical requirement 
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(13) 

It follows from motion equation (3) with regard for (13) 
and 

‘)2 lb 

FIG. 1. Velocity profiles for external asymptotic expansion. 

0 
2 4 6 inside the boundary layer, that 

(14) 

Temperature (~on~ntration) and velocity profiles 
found by the method suggested and determined from 
the solution of complete problem (l), (2) with it = 1, 
Prr = Pr, = 100, A = 0, M = 1, y = 0 (for n = 1 prob- 
lem (l)-(2) allows the similarity solutions) are presented 
in Fig. 2. ‘The plots show fine agreement between the 
results. For example, the difference between exact and 
approximate heat- and mass-transfer and friction char- 

I a’o=O at y=(). 
ZY? 

(16) 

Approximating the temperature profile by the third- 
power polynomial and satisfying (41, (l3), (16), we arrive 
at 
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FIG. 2. Temperature and velocity profiles obtained from 
exact solution and by coupled asymptotic expansions. 

Integrating the energy equation from yi = 0 to yr = 6 
and allowing for the continuity equation and conditions 
(14), (4) we obtain the integral relationship 

For O(Fo. x, yr) we have 

Substitution of (17) into the integral relationship 
yields upon tr~sfo~ations 

6 86 2(2n+l) 
--C(n)6 

c&j 
-_ 
4aFo+ __ ?I+1 

n x= 1, (18) 

8 n 3n 
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where 
n+l 

C(n) = ‘I (3-8q+6$-q4) G d?. 
63 

To cIose the problem, conditions with Fo = 0 and 
x = 0 are needed. They are 

6(0,x) = 0, 6(Fo, 0) = 0. (19) 

The system of characteristics for (18) is written in 
the form 

0” 
L 

4 0.35 _ 
0 

‘m t 

2 0 25 

dFo dx 
-zz 

6 2(2n + l)C(n) 6y 
= da. (201 

4 It+1 
8 n 3n 

IO 20 
x 

This set of equations breaks down into the following FIG. 3. Limiting and heat- and mass-transfer characteristics 

equations for unsteady free convection. 

dFo=;d6, 

II+1 2n+l 

dx = [2(2n+f)C(tz)/‘(8 n 3416 ” d6, (21) 
!I+1 2n+l --- , 

[2(2n+ l)C(n),‘@ n 3416 n dFo = idx. 

Integration of the first equation in (12) with regard 
for (19) yields 

6 = 2 J(2Fo) (Fo d Fo,). (22) 

After inte~ation of the second equation of system 
(21) with regard for (19) we obtain 

II + I n 

Relation (22) is valid for unsteady-state free convec- 
tion regime, and equation (23) gives the relation for 
a steady-state free convection regime. The relation for 
limiting characteristics which determines time Fo, 
necessary that a steady state be achieved at any x, is 
found from the third equation of system (21) allowing 
for equations (22) and (23) 

n+I 2n 

The velocity of steady-state front propagation is 

“-‘2n”i-1 
?ifl 

I_I=g m ----- C(n)Fo Zn . 

The time of development of a steady state vs n and 
x (limiting characteristics) is plotted in Fig. 3. Increase 
in pseudoplasticity decreases sharply the time of 

development of a steady state at free convection, thus 
increasing heat fluxes on the surface. 

The local Nusselt number is 
,! 

Nu = ; CrPin?inprJz. 

It should be concluded that the method of coupled 
asymptotic expansions may be applied not only when 
the wall temperature but also a heat flux are prescribed 
[IS]. Besides, this statement allows the characteristics 
of heat and mass transfer and friction at a wall for thin 
bodies of revolution [6,7] to be found. 
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LA PREVISION DE LA CONVECTION NATURELLE 
DANS LES FLUIDES NON-NEWTONIENS 

Rhsumit-On presente une methode de prevision de la convection libre dans les fluides newtoniens et 
visqueux a comportement non-lineaire, aux nombres de Prandtl et de Schmidt &eves, sous forme de 
dtveloppements asymptotiques externes et intemes couples. On montre que la mtthode permet essen- 
tiellement de simplifier la resolution du probleme initial en foumiss~t en particulier des solutions de 
similitude. Des solutions sont present&es pour la convection naturelle stationnaire et non-stationnaire. 
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EIN VERFAHREN ZUR BERECHNUNG DER FREIEN KONVEKTION 
IN NICHT-NEWTONSCHEN FLUIDEN 

Zusammenfassung-Es wird der Versuch untemommen, die freie Konvektion in nicht-Newtonschen und 
Newtonschen Fluiden bei hohen Prandtl- und Schmidt-Zahlen mit Hilfe gekoppelter, extemer und 
intemer asymptotischer Entwicklungen darzustellen. Es wird gezeigt, dag diese Methode die Losung des 
urspriinglichen Problems wesentlich vereinfacht und speziell Ahnlichkeitslosungen erlaubt. Fur station&e 

und instationare freie Konvektion werden Losungen angegeben. 

MET08 PEIIIEHHJI 3AAAH CBO6OAHOH KOHBEKDWH B HEHbIGTOHOBCKHX 
)ICHAKOCTJIX 

Amroramm - IIpencrasner-t Meron nonyvetfua pemeiiwa 3anay ~~060~~09 KOHB~KUHH nenmeil- 

HOBII3KIIX U HLKITOHOBCKHX XWAKOCTeti, HMelOlIQiX 6onbmee WiCAa npaHATJISl H IhulnATa, a BHAC 

CpalIUiBaCMbIX BHeUIHBX H BHYTPCHHHX aCKM,ITOTHWCKHX pa3JIOXWZHH8. ~OKa3aH0, ST0 AaHHbIfi 

MeTOA CyLIJCCTBeHHO )TIpOUIaeT pt%.LleHHe HCXOAHOit 3aAa’lH, Il03BOARSI, B SWTHOCTH, IlePeXOAHTb K 

ZiBTOMOAtYlbHbIM PeLUeHHRM. HaitAeHbI PeIIIeHHR 3aAayH KBK CTaQHOHiSpHOi, TaK H HeClaUEOHapHOit 
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